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Abstract

Climate change threatens food security in Sub-Saharan Africa, but the magnitude of its nutritional im-

pacts and the household-level behaviours that mediate them remain understudied. I examine how extreme

heat during the crop growing season affects the commercialization and consumption decisions of Nige-

rian smallholder farming households, and how these responses shape post-harvest nutrition. Using five

waves of panel data (2010–2024) linked to high-resolution weather, I exploit within-household varia-

tion in growing-season temperatures. Results show that hotter seasons depress harvests and reduce diet

quality while leaving total caloric intake unchanged. I estimate that a +1◦C warming would result in

1.62 and 0.63 million additional households with inadequate protein and iron intake, respectively. Less

educated households and those with young children, who require protein and iron for growth, are more

adversely affected. I demonstrate that households reduce crop commercialization to safeguard calories

from own-produced staples and cut their purchases of nutritious and cash-intensive foods. This reflects

a risk-minimizing behaviour under incomplete food and labor markets and binding caloric constraints.

In line with this, I find no evidence of adjustments in off-farm labor. Findings suggest that on-farm

adaptation alone cannot maintain diet quality under climate change, underscoring the need for integrated

policies that extend beyond calorie sufficiency and pair market participation and labor market develop-

ment strategies with climate-risk mitigation.
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1 Introduction

Undernutrition undermines human capital formation (Glewwe et al., 2001; Maluccio et al.,

2009), deteriorates long-run health (Hoynes et al., 2016), and reduces productivity (Case and

Paxson, 2008). The associated aggregate economic burden resulting from lost productivity and

direct healthcare costs is substantial, at roughly 2-3% of global GDP each year (FAO, 2013).

Despite notable progress over recent decades, the burden remains pronounced in Sub-Saharan

Africa: undernourishment affects more than 22% of the population (FAO, 2022), and micronu-

trient deficiencies are widespread (FAO et al., 2021; Passarelli et al., 2024). At the same time,

the region is warming faster than the global average (WMO, 2024). The increased frequency

and intensity of extreme heat events could slow or even reverse progress against malnutrition

(Blom et al., 2022). This is a salient issue for Sub-Saharan Africa, where the majority of house-

holds are smallholder farmers, for whom a hot growing season poses a direct threat to their

primary sources of food and income.

While the link between extreme heat and reduced agricultural productivity is well-established

(Hultgren et al., 2025; Schlenker et al., 2006; Schlenker and Roberts, 2009), much less is known

about the pathways through which these productivity shocks translate into household nutrition.

The magnitude of this impact is also uncertain, shaped by households’ capacity to adapt. Faced

with a harvest shortfall, a farm household’s food consumption and crop commercialization de-

cisions are intertwined under incomplete food and labor markets, common in such developing

settings (Dillon and Barrett, 2017; Dillon et al., 2019). Yet, much of the literature has fo-

cused on coarse nutritional outcomes, such as self-reported food security or dietary diversity

indices, which capture the extensive margin of consumption, or total energy intake (Dillon et

al., 2015; Randell et al., 2022; Dasgupta and Robinson, 2022; Villacis et al., 2022; Kroeger,

2023). These metrics can mask important changes in dietary quality and obscure the commer-

cialization–consumption nexus that mediates nutrition.

This paper examines the impact of extreme heat on food consumption and nutrition among

smallholder farm households. I focus on Nigeria, the most populous African nation, with over

70% of households engaged in farming, high poverty rates, and widespread food insecurity

(National Bureau of Statistics, 2024; World Bank, 2025). I study adjustments to consumption
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and commercialization patterns in response to temperature-induced crop losses and assess their

implications for undernutrition, diet quality, and nutrient intake.

I use five waves of nationally representative panel data from the Nigeria Living Standards

Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA), spanning 2010–2024.

The survey provides microdata on household-level agricultural production, livestock manage-

ment, and comprehensive food consumption diaries. I convert the latter into calories and the

intake of crucial nutrients to dietary health, including protein, iron, zinc, and vitamin A, and

create nutrient adequacy indicators based on international requirement standards and household

composition. I then match these data with high-resolution gridded weather data. I model the

relationship between weather and agricultural productivity as a non-linear function of cumula-

tive exposure to heat and precipitation during the growing season. My hypothesis is that high

growing-season temperatures increase crop losses, and that this decline in agricultural output

is subsequently transmitted to reduced household welfare after harvest. The empirical strategy

exploits quasi-random within-household variation in growing-season temperatures to identify

the impact of extreme heat on post-harvest nutrition.

I find that hotter growing seasons significantly reduce harvests. In the short term, how-

ever, this productivity loss does not translate into a reduction in total energy intake. Instead,

the shock’s impact is on diet quality. Extreme heat leads to a decrease in household dietary

diversity and an increase in the proportion of households with inadequate protein and iron in-

take. The magnitude is economically significant: a uniform +1◦C warming is associated with

an additional 1.62 million and 0.63 million Nigerian households (4.04% and 1.56% of farm

households) with inadequate protein and iron intake, respectively.

Tracing the mechanisms, I demonstrate that households respond to the harvest shortfall by

adjusting their market behavior in a manner consistent with risk minimization under incomplete

food and labor markets and binding caloric constraints. First, households sell a smaller share

of their harvest. This adaptation allows them to maintain consumption of their own-produced

foods, mainly cereals, roots, and tubers, thereby securing their caloric needs. Second, this

decision, combined with the initial harvest loss, generates an income shock, reflected by a

drop in total expenditure. Households cope by cutting spending on both food purchases and
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non-food items. The cuts to food purchases disproportionately affect cash-intensive, nutritious

foods such as vegetables, pulses, and animal meat, which are essential components of a healthy

diet and significant sources of protein and iron. Thus, this ex-post adaptation strategy to ensure

energy sufficiency directly degrades diet quality. Adverse nutritional effects worsen as time

since harvest elapses and own-produced food stocks are depleted.

These adverse effects are not borne equally. The nutritional impacts are significantly larger

for households with less-educated heads and those with young children, a concerning find-

ing that aligns with evidence showing extreme heat increases the prevalence of child stunting

(Blom et al., 2022). While closeness to markets and income diversity are associated with im-

proved nutrition, they do not moderate the adverse effects of high growing-season temperatures.

Livestock management, itself adversely affected by heat, does not buffer nutritional and income

losses. Findings suggest that post-harvest market-level prices are largely unresponsive to grow-

ing season temperatures, at least in the short run. Consistent with incomplete labor markets, I

find no statistically significant effects of extreme heat on post-harvest off-farm labor.

This paper makes three main contributions. First, it adds to the growing literature on heat’s

impact on nutrition in low-income settings with agricultural-dependent livelihoods (Dillon et

al., 2015; Malacarne and Paul, 2022; Amare et al., 2021; Wegenast et al., 2025), by provid-

ing new causal evidence on the translation of heat shocks into malnutrition, moving beyond

coarse, experience-based food security or energy-based metrics to focus on the intensive mar-

gin of nutrient adequacy. It shows that focusing on energy sufficiency can mask significant

deteriorations in diet quality. While nutrient inadequacies - most notably protein and iron - are

pervasive among Sub-Saharan African farm households, they have received limited attention in

past economic analyses of food consumption, with the notable exception of McCullough et al.

(2024).

Second, by separating consumption into own-produced and purchased sources, which is

absent from the climate-nutrition literature, I provide evidence on how heat-induced harvest

losses trigger defensive reallocation, consistent with caloric risk minimization under incomplete

food and labor markets. Households retain a larger share of staple production for home use and

cut market purchases of nutrient-dense foods, preserving calories at the expense of diet quality
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in a pattern aligned with Bennett’s law and the literature on farm households’ consumption

response to macroeconomic shocks (Headey et al., 2014; Ecker and Hatzenbuehler, 2022).

Third, I reveal an ex-post farm household adaptation response not previously documented.

Following a heat shock in the growing season, households reduce commercialization and the

share of harvest sold. The positive relationship between commercialization and smallholder

farmers’ nutrition is well-documented (Hazrana and Mishra, 2025; Chegere and Kauky, 2022;

Ogutu et al., 2020). Increasing market participation through interventions that lower transaction

costs, improve smallholders’ access to markets and information, and strengthen producer orga-

nizations and rural infrastructure is essential to escaping semi-subsistence poverty traps (Omiti

et al., 2009; Barrett, 2008). My findings suggest that climate change may represent an additional

constraint to such participation. This complements a rich literature focusing on ex-ante produc-

tive responses to extreme weather shocks (Aragón et al., 2021; Mayorga et al., 2025; Costinot et

al., 2016), the reallocation of economic activities (Rosenzweig and Stark, 1989; Kochar, 1999),

and consumption smoothing techniques, such as asset sales and access to credit (Rosenzweig

and Wolpin, 1993; Di Falco et al., 2011).

These findings highlight the limitations of on-farm strategies in mitigating nutritional risks

under climate stress. Households’ defensive adaptation preserves caloric intake but degrades

nutrient adequacy, underscoring the need for policy approaches to extend beyond energy suffi-

ciency. To protect nutrition, interventions must integrate climate-risk mitigation with strategies

that expand income diversification and foster market participation.

This paper is divided as follows. Section 2 develops a conceptual framework. Section 3 de-

tails the Nigerian context and the data sources, including the construction of the main variables

used in this study and summary statistics. Section 4 describes the empirical strategy. Section

5 presents the main results, investigates household adaptation responses, explores heterogene-

ity and potential moderators, and discusses the effect of a uniform warming scenario. Finally,

Section 6 concludes.
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2 Conceptual framework

This section develops a conceptual framework to examine how smallholder farmers adjust

commercialization decisions and diet composition in response to extreme heat. I depart from

standard agricultural producer-consumer household models in the development literature (Ben-

jamin, 1992; Janvry et al., 1991; Pitt and Rosenzweig, 1985), where households make simulta-

neous, non-separable decisions regarding consumption and commercialization.

Without loss of generality, I assume a one-person farm household framework with a single

output, s, harvested after the growing season. I call this output “staples” and it can refer to any

cereals, roots, or tubers commonly cultivated by Nigerian smallholder farmers.1 Harvest for s

depends on A (with s′(A) > 0), a productivity shifter that captures the idea that farmers using

identical inputs may face different levels of output due to farming skills, soil quality, or exposure

to weather shocks.2 Consistent with the agricultural yields and temperature literature (Hultgren

et al., 2025), extreme heat (H) has a detrimental effect on productivity, such that A′(H) < 0.

Household’s utility is U(c, n), where n is the consumption of non-staple “nutritious” foods (e.g.,

vegetables, fruits, animal-sourced foods), while c represents other market consumption. Staple

consumption does not enter the utility function as they are a cheap way to meet basic calorie

requirements, denoted K, with ks the calorie content of one unit of s and kn the calorie content

of one unit of n. The household obtains income by selling a share q ∈ [0, 1] of s or supplying

off-farm working hours l ∈ [0, L̄] at fixed wage w > 0.3 I assume that the utility function is

increasing and strictly concave and ps
ks

< pn
kn

.4

After each harvest season, the household maximizes utility by choosing off-farm labor l, the

commercialization share q ∈ [0, 1], selling qs and retaining (1−q)s for home consumption, and

the quantity of nutritious foods n and staple foods sb purchased. In this simplified setting, the

1The National Bureau of Statistics (2024) shows that the most commonly cultivated crops among farming
households (as a share of farming households growing crops) are maize (44.9%), sorghum (28.5%), millet (17.8%),
and rice (16.2%) (cereals); cassava (44.9%) and yam (18.7%) (roots and tubers). Other crops, such as pulses or
nuts, are less cultivated, e.g., beans (16.5%), groundnut (11.5%).

2I assume that capital is fixed, e.g., access to irrigation, which is low in Nigeria.
3L̄ represents a cap on the number of hours the household can work off-farm in the post-harvest period. Because

I define utility only over n and c, the model would otherwise push off-farm hours to infinity at any positive wage.
L̄ is the maximum feasible hours given day length and other household and farm maintenance tasks.

4Globally, including in Sub-Saharan Africa, the price per kilocalorie is significantly lower for staples than
nutritious foods (Masters et al., 2018; Bai et al., 2021).
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farm household’s problem is:

max
q,l

U(c, n)

s.t. pssb + pnn+ c ≤ psqs+ wl

ks[(1− q)s+ sb] + knn ≥ K

If output and labor markets exist and are well functioning, consumption, commercialization,

and labor decisions can be studied separately (Benjamin, 1992). In this case, pbuys = psells = ps

(i.e., no wedge); thus, commercialization is purely an accounting choice, and the household is

indifferent between retaining their own-produced staples for consumption and selling them and

then purchasing staples. A temperature-induced harvest shortfall represents an income shock,

which can be offset by supplying more off-farm labor l ∈ [0, L̄]. There is no sharp prediction

on the effect on n, but intake should be maintained with ample earning capacity, i.e., high w or

high L̄ compared to the initial off-farm labor supply endowment.

This prediction changes in the case of incomplete markets. Under incomplete food markets

but complete labor markets, selling and buying staples destroy value as pbuys = psells + υs. To

meet calorie requirements cheaply after a harvest shortfall, the household avoids paying the

wedge υs > 0 by retaining more of the smaller harvest. Cash needs for n are partially met by

working more off-farm, and the overall impact on n depends on the earning capacity. Under

incomplete labor markets (e.g., constrained by local demand) but complete food markets, there

is no wedge on staple prices, and calories can be purchased without extra loss if there is cash.

However, liquidity is tight because l cannot expand (or is limited). Therefore, the household

sells a higher share of the harvest to raise cash when needed, and n declines, particularly when

the calorie constraint is binding.

Finally, in the case with both incomplete food and labor markets, the cheapest way to secure

calories is to retain s, thus dq
dA

< 0, and the ability to earn cash is limited, thus dl
dA

≈ 0. This

result suggests that, in contexts with imperfect food and labor markets, extreme heat induces

households to reduce commercialization and the consumption of nutritious foods. Because sell-

ing and repurchasing staples is costly in thin and incomplete markets, and post-harvest work
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opportunities are rationed, households retain a larger share of the harvest to secure calories and

scale back cash-intensive, nutritious food purchases. Households also face a risk of calorie

shortfall if K is high relative to s. The prediction is especially relevant where staple buy–sell

wedges are large and local labor demand is limited, conditions that characterize many small-

holder environments in Nigeria and similar developing settings (Dillon and Barrett, 2017; Dillon

et al., 2019).

This framework also highlights forces that could confound a negative relation between ex-

treme heat and commercialization. First, if extreme temperatures depress aggregate supply and

raise output prices, higher prices would encourage sales, biasing the heat–commercialization

coefficient toward zero or a positive value. I examine the role of prices in Section 5.6. Second,

correlated productivity shocks can raise harvests and sales in periods that are also classified as

hot, attenuating a negative effect. This could be the case with precipitations, thus I flexibly

control for precipitation to net out correlated agronomic shocks.

Guided by this framework, the empirical analysis estimates the effect of extreme heat on

home-grown consumption, commercialization, purchases, and subsequent dietary quality as

measured both through dietary diversity and nutrient adequacy. Several limitations are worth

noting. I focus on ex-post household adaptation, i.e., after the weather shock occurred (Carleton

et al., 2024). At the time of commercialization and food consumption decisions, I treat harvest

as predetermined, abstracting from ex-ante adaptation, such as production-stage adjustments.

Post-harvest off-farm labor l does not affect production and thus enters only as an income-

generation margin. The literature documents additional within-growing season responses, such

as changes in input use (Mayorga et al., 2025; Aragón et al., 2021) and crop mix (Costinot et

al., 2016), as well as consumption-smoothing strategies, including off-farm work and migration

(Rosenzweig and Stark, 1989; Kochar, 1999). I examine these additional potential adaptation

responses in Section 5.6.
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3 Data

3.1 The Nigerian Context

Nigeria, the most populous nation in Sub-Saharan Africa with approximately 233 million peo-

ple, serves as the setting for this analysis. The country faces considerable socioeconomic chal-

lenges, with 56% of its population living below the poverty line and over 30 million experienc-

ing acute food insecurity (World Bank, 2025; World Food Programme and Food and Agriculture

Organization of the United Nations, 2025). Agriculture is central to Nigeria’s economy, involv-

ing over 70% of households (over 42 million). Major cultivated crops include maize, cassava,

sorghum, yams, and millet (National Bureau of Statistics, 2024). Poverty is widespread among

farm workers (World Bank, 2014). Agricultural productivity is hampered by several constraints,

including limited market access, land degradation, insufficient infrastructure, and minimal ir-

rigation (World Bank, 2025). Climate change intensifies these challenges and is projected to

decrease agricultural productivity and worsen food insecurity, making Nigeria increasingly vul-

nerable (World Bank, 2021). Understanding farm household responses to rising temperatures is

thus crucial and a key aspect of designing effective climate adaptation policies.

3.2 LSMS-ISA data

This study utilizes panel data from the Nigeria General Household Survey (GHS), part of the

Living Standards Measurement Study-Integrated Surveys on Agriculture (LSMS-ISA). Specif-

ically, it uses five waves collected in 2010/11 (wave 1), 2013/14 (wave 2), 2015/16 (wave 3),

2018/19 (wave 4), and 2023/24 (wave 5). The LSMS-ISA is a nationally representative and

georeferenced household survey.5 It captures detailed information on household demographics,

socioeconomic characteristics, plot- and crop-level agricultural activities, livestock manage-

ment, food prices, and food consumption. Demographic information is captured post-planting,

5A partial panel refresh was carried out in wave 4. Also, the representativeness of the GHS was impacted
during wave 4 due to security issues, which prevented data collection in some locations. As a result, the wave 4
data is only representative of the areas that were safely accessible. The GHS does not track “split-off” households.
I test the robustness of my results to the exclusion of the two latter waves 4 and 5 in Section 5.5.
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while the other variables used in this analysis are derived from the post-harvest dataset collected

between January and April.

A harmonised farm-to-fork micro panel dataset was constructed. Household-level agricul-

tural output data were processed following the work of Bentze and Wollburg (2024). Only

households engaged in crop cultivation, with available geolocation,6 and observed for at least

three waves were retained. Furthermore, households must have at least two waves with strictly

positive agricultural output, plot area, and food consumption. This selection process yields a

final sample of 9,006 observations from 2,832 unique households, distributed across 392 enu-

meration areas (clusters), representing 92.5% of the panel farm household-year observations

from the five survey waves of the Nigeria LSMS-ISA (Table C1). Figure 1 displays the geo-

graphical distribution of these clusters, illustrating the survey’s comprehensive coverage across

Nigeria.

Household food consumption data were collected through a 7-day recall, which detailed the

food items consumed and their sources (own production, purchase, gift/transfer). It is important

to note that these data reflect household-level food availability rather than individual intake, as

they do not account for waste or intra-household distribution. Household food consumption data

were processed following the work of McCullough et al. (2024). To assess nutritional status,

food consumption quantities were harmonised to kilograms based on reported standard units or

converted from non-standard units. Nutritional content was assigned using African food com-

position tables, adjusted for edible portions and potential cooking losses. Assumed fortification

rates for relevant staples were incorporated, as described in Appendix A. Household-level nutri-

ent requirements - i.e., dietary energy, protein, iron, zinc, and vitamin A - were calculated based

on the age and sex composition of the household, using estimated average requirements (EAR)

from established sources and adult equivalence scales.7 Adequacy percentages were constructed

by dividing each household’s total energy and nutrient availability by its EAR. Based on these

percentages, dummy variables were created to indicate whether household-level caloric or nutri-

6Enumeration area coordinates are not publicly disclosed for wave 5. For this wave, I replaced missing coordi-
nates with the enumeration area coordinates from the previous wave for the same enumeration area.

7For example, children and elderly members are counted as less than one full adult equivalent. See Appendix
A for more details.
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Figure 1. Map of sample cluster locations. Map of Nigeria, showing Northern (darker gray)
and Southern (lighter gray) zones and regional borders. Cluster locations are represented by red
dots. Based on 2,832 unique panel farm HH, within 392 enumeration areas (clusters).

ent consumption falls below 100, 80, or 60 percent of the recommended levels. The thresholds

below 100% adequacy serve as a proxy to capture distributional impacts. Hereafter, I will refer

to the 80% adequacy threshold as “suboptimal” intake and the 60% threshold as “insufficient”

intake.

Finally, household dietary diversity is measured using the Household Dietary Diversity

Score (HDDS), which reflects a household’s economic access to varied food and its food se-

curity. The standard HDDS includes 12 food groups (FAO, 2011).8 Following Nguyen and

Qaim (2025), the oils/fats, sugar/honey, and miscellaneous food groups are excluded, as these

are often considered less nutritious and may skew the HDDS as a measure of dietary quality

8The 12 food groups are: cereals; roots & tubers; vegetables; fruits; meat, poultry, and offal; eggs; fish and
seafood; pulses, legumes, and nuts; milk and milk products; oil/fats; sugar/honey; miscellaneous (mostly spices,
condiments, and beverages) (FAO, 2011).
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Mean Median SD Min. Max.
Head age (years) 52.87 52.00 14.62 16.00 100.00
Head formal education (1/0) 0.40 0.00 0.49 0.00 1.00
Head female (1/0) 0.14 0.00 0.35 0.00 1.00
Child < 5 yo (1/0) 0.47 0.00 0.50 0.00 1.00
Child < 15 yo (1/0) 0.79 1.00 0.41 0.00 1.00
HH size 6.06 6.00 3.25 1.00 31.00
Total yield (kg/ha) 8,224.58 3,063.20 12,837.06 0.00 56,497.18
Total harvest (kg) 3,181.84 1,500.00 6,255.99 0.00 161,000.00
Total area (ha) 1.00 0.51 1.64 0.00 42.57
Share of harvest sold 0.20 0.00 0.30 0.00 1.00
HH livestock under management (1/0) 0.69 1.00 0.46 0.00 1.00
HH annual total exp per capita (USD 2020) 671.77 490.24 956.84 43.97 38,805.34
HH dietary diversity score (HDDS) 5.58 6.00 1.61 1.00 9.00
HH own-production share of energy intake 0.46 0.49 0.28 0.00 1.00
Observations 9,006

Table 1. Household descriptive statistics. Agricultural output values are winsorized at the
99th percentile. Annualized expenditure in USD 2020 (originally, food: last 7 days; non-food:
last month or last 12 months). Expenditure information is missing for wave 5. Household
dietary diversity score (HDDS) is defined as nine groups based on (Nguyen and Qaim, 2025).
HH: household.

(Verger et al., 2019).

Table 1 provides descriptive statistics on household characteristics and agricultural output.

On average, households have a total plot area of 1.0 hectare (ha). The majority of households

do not participate in the commercialization of their harvest. Over two-thirds of the sample

manage livestock. Average daily per capita expenditure is USD 1.84 (2020 USD), reflecting the

high prevalence of extreme poverty among Nigerian farm households. The median household

reports having consumed six out of the nine food groups that comprise the HDDS in the last

seven days, with cereals and vegetables representing the two groups with the highest likelihood

of consumption (over 97%) (Figure B1).

Figure 2 displays the average share of sample households with adequate dietary intake for

energy, protein, and three micronutrients, including iron, zinc, and vitamin A. Protein is crucial

for basic growth and tissue repair. The selected micronutrients are critical for vital physiological

functions: iron for oxygen transport (preventing anemia), vitamin A for vision and immunity,

and zinc for immune function and growth (Passarelli et al., 2024). Deficiencies in these areas

lead to severe outcomes like stunted growth, weakened immunity, and cognitive impairment,
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Figure 2. Average energy and nutrient adequacy levels. HH: household.

all of which hinder productivity and development (Black et al., 2013). The mean prevalence of

household energy adequacy is 42%. Among nutrients, adequacy is highest for vitamin A (87%)

and lowest for zinc (54%). As expected, the share of sample households with adequate dietary

intake is higher for lower adequacy levels.

3.3 Weather data

Household locations (cluster centroids) were matched with high-resolution gridded weather

data. Daily temperature data were obtained from the European Centre for Medium-Range

Weather Forecasts (ECMWF) ERA5 reanalysis dataset, which provides data at a 0.1◦ × 0.1◦

resolution (approximately 10km × 10km) (Hersbach et al., 2020). Precipitation data were de-

rived from the University of California, Santa Barbara Climate Hazards Center Infrared Precipi-

tation with Station (CHIRPS) dataset (Funk et al., 2015). Originally at 0.05◦×0.05◦ resolution,

monthly precipitation data were reaggregated using means to match the 0.1◦ × 0.1◦ ERA5 grid.

The weather data for a specific grid square was assigned to an LSMS-ISA cluster if the cluster

lay within that grid square.

The growing season is defined based on the Famine Early Warning Systems Network (FEWS-
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households, i.e., 9,006 observations, 2,832 HH, within 392 enumeration areas (clusters), over
2010-2023.

NET) agricultural calendar for Nigeria (Figure B5).9 It refers to the period during which crops

are planted and grown. It is defined as March to August for the Southern region (including the

South East, South South, and South West administrative regions) and May to September for the

Northern region (including the North Central, North East, and North West administrative re-

gions). This definition aligns with the distribution of the percentage of planted plots per month

derived from the 39,030 plots cultivated by the sample farm households (Figure B6). Figure 3

shows the distribution of temperatures observed during the last completed growing season for

the whole sample.10

9Source: Famine Early Warning Systems Network, Season Calendar (Accessed 10 April 2025).
10Figure B7 presents a similar distribution by region.
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4 Empirical strategy

The empirical analysis aims to identify how households respond to extreme heat and its impact

on household nutrition. The primary channel through which weather affects farm households

is agricultural production. Assuming farm-level production in Nigeria can be represented by a

Cobb-Douglas production function,11 where yi,t denotes agricultural output (post-harvest) for

household i following growing season t, weather conditions in the growing season affect output

production through their effect on the productivity term Ai,t (Aragón et al., 2021). I approximate

the reduced-form nutritional impact of weather conditions during the last growing season using

the following log-linear regression model:

yi,t = g(β,wi,t) + λm + µt + ηi + εi,t (1)

where the y is post-harvest agricultural output or a nutritional outcome and g(β,wi,t) is a

non-linear function of temperature and precipitation wi,t during the last growing season. The

parameter of interest is β, which represents the vector of reduced-form estimates of the effect

of weather shocks on farm household nutrition. This multi-way panel fixed effects regression

approach is common in the climate economics literature (Dell et al., 2014). The identification

strategy leverages the quasi-random variation in weather exposure within-households across

growing seasons. I include a comprehensive set of fixed effects to isolate this exogenous varia-

tion. The terms λm, µt, and ηi are respectively a set of month-of-interview fixed effects, growing

season fixed effects, and household fixed effects. λm control for seasonality in nutrition, such as

the depletion of food stocks as the interview date gets further from the last harvest. µt accounts

for any country-wide changes in weather conditions or nutrition that may be spuriously corre-

lated over time, as well as macro-level trends and systemic measurement error across survey

waves. ηi controls for unobserved time-invariant household characteristics and heterogeneity.

Based on the seminal work of Schlenker et al. (2006), I model the nonlinear relationship

between temperature and productivity using a degree-days approach. This method allows for

11yi,t = Ai,tK
α1
i,t L

α2
i,tX

α3
i,t , where Ai,t represents the productivity term, Ki,t capital use (e.g., land area), Li,t

labor use (e.g., family and hired labor), and Xi,t input use (e.g., fertilizer).
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temperature exposure effects to be cumulative, with temperature exposure being beneficial up to

a certain point and harmful thereafter. Specifically, I construct two measures for each household

i in growing season t: growing degree days (GDDi,t) and harmful degree days (HDDi,t).

GDDi,t capture the cumulative exposure to temperatures between 8◦C and a threshold τ ,12

while HDDi,t captures exposure to extreme heat, i.e., temperatures above τ . Formally:

GDDi,t =
n∑

d=1

(
min{hi,d, τ} − 8

)
1{hi,d ≥ 8},

HDDi,t =
n∑

d=1

(
hi,d −τ

)
1{hi,d > τ}.

(2)

Here, hd is the average temperature on day d and n is the total number of days in the growing

season. A key empirical challenge is defining τ , the temperature threshold above which harm

occurs. This threshold is likely crop- and context-specific. Estimates from studies in other

settings may not be transferable due to differences in crop mix, agricultural technology, and

climate. Therefore, I adopt a data-driven approach by estimating a series of regressions of log

agricultural output on GDDτ
i,t and HDDτ

i,t, iterating τ across a range of plausible temperatures,

similar to the procedure used in Schlenker et al. (2006). I then select the optimal threshold, τ ∗,

that provides the best model fit (i.e., the highest R2).

I control for total growing season precipitation (Pi,t) and its square to account for the cumu-

lative non-linear effects of rainfall and avoid omitted-variable bias.13 This leads to the following

parametrization of the function g(β,wi,t):

g(β,wi,t) = β1GDDτ∗

i,t + β2HDDτ∗

i,t + β3Pg,y + β4P
2
g,y (3)

The dependent variable in Equation 1 is transformed into logarithms for continuous vari-

ables. This is problematic for the food group-level analysis for a subset of households that

reported zero consumption for specific food groups (Figure B1). To avoid the issue of an un-

128◦C is a common lower bound for growing degree days in the literature (Aragón et al., 2021; Schlenker et al.,
2006; Schlenker and Roberts, 2009).

13The main practical risk is multicollinearity, as temperatures and precipitations can move together at seasonal
scales (e.g., during the growing season), which can inflate standard errors and make the separate coefficients less
precise. However, this impacts precision, not consistency.
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defined variable, I adopt the solution proposed by Blakeslee and Fishman (2018) and Carpena

(2019). Specifically, zero-consumption observations are handled by setting the dependent vari-

able to zero and simultaneously including a dummy variable to account for this data adjustment

in the regression.14

Lastly, I account for potential spatial and temporal correlation in the error terms (εi,t) by es-

timating spatial heteroskedasticity and autocorrelation Consistent (HAC) standard errors based

on Conley (1999), using a distance parameter of 100 km and a temporal lag parameter of 5

years.15

5 Main results

5.1 Temperatures and agricultural production

This section presents my main empirical results on the effect of extreme heat on farmers’ pro-

ductivity, as measured by total harvest (in kilograms). First, Figure 4 documents the outcomes

from the iterative procedure consisting of nine regressions with different threshold τ ranging

from 26◦C to 34◦C and the comparison of model fit. This procedure yields an optimal thresh-

old of τ ∗ = 31◦C.16 I use GDD and HDD calculated with this threshold in all subsequent

regressions.

Table C3 presents the results obtained from estimating Equation 1 on total yield, harvest,

and land area. Consistent with previous findings in other contexts (Schlenker and Roberts,

2009; Hultgren et al., 2025; Burke and Emerick, 2016), the estimates suggest that extreme heat

has a negative effect on agricultural productivity and output. Each additional HDD in the last

completed growing season results in a 1.54% decrease in total harvested quantities. To put this

14I provide a robustness check measuring household energy intake at the food group level in levels rather than
logarithms in Section 5.5.

15Given that my choice of distance and temporal lag parameters of the spatial HAC standard errors is arbitrary,
I assess the sensitivity of my main findings to variations in these parameters in Section 5.5.

16Figure B8 presents the results for a similar iterative procedure using total yield (kg/ha) as outcome, yielding
the same threshold τ∗ = 31◦C.
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Figure 4. Optimal GDD/HDD threshold using an iterative regression approach and effect
on total harvest. The left panel compares model fit (measured as R2) between nine regres-
sions, one for each GDD/HDD threshold between 26◦C to 34◦C. The right panel compares the
marginal impact of one HDD for each of the nine regressions. Total harvest is measured in log-
arithms, thus coefficients can be interpreted as the relative percentage change for one additional
growing season HDD. Conley spatial HAC standard errors (in parentheses).

figure in perspective, note that under a uniform +1◦C warming scenario, Section 5.7 projects

that the average number of HDD during the growing season could increase by 12.95.

5.2 Temperatures, dietary diversity, and the intake of energy and nutrients

I estimate Equation 1 to test how extreme heat impacts the intake of energy and nutrients.

Despite the extreme heat’s impact on total harvested quantities, it does not have a statistically

significant impact on average energy and nutrient intake.17 However, I find that extreme heat

during the last completed growing season decreases household dietary diversity, with statistical

significance at the 10% level (Table 2), in line with Dillon et al. (2015)’s findings using cross-

sectional data from wave 1 of the Nigeria LSMS-ISA panel. This effect is driven by a reduced

likelihood of consuming nutritious foods, including fruits, meat, and eggs (Figure B9). These

17Table C4 shows similar results considering the effect of extreme heat on the average intake of the macronutrient
components of total energy, namely carbohydrates, protein, and fat.
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HDDS Energy Protein Iron Zinc Vitamin A
GDD in growing season -0.0005 0.0001 0.0001 0.0002 0.0003 0.0003

(0.0003) (0.0002) (0.0002) (0.0002) (0.0003) (0.0002)
HDD in growing season -0.0053* -0.0002 -0.0005 0.0004 0.0007 0.0016

(0.0029) (0.0015) (0.0015) (0.0017) (0.0016) (0.0021)
Household FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Month-of-int FE Yes Yes Yes Yes Yes Yes
Precipitations Yes Yes Yes Yes Yes Yes
R2 0.597 0.554 0.605 0.620 0.516 0.455
Observations 9,006 9,006 9,006 9,006 9,006 9,006

Table 2. Temperatures, dietary diversity, and the intake of energy and nutrients. The
household dietary diversity score (HDDS) is defined as nine food groups based on Nguyen and
Qaim (2025). Coefficients on HDDS can be interpreted as the absolute change in the HDDS for
one additional HDD (sample mean: 5.58). Total energy, protein, iron, zinc, and vitamin A are
measured in logarithms, thus coefficients can be interpreted as the relative percentage change
for one additional HDD. Conley spatial HAC standard errors (in parentheses). FE: fixed effects.

food categories, which represent essential components of a diverse diet and rich sources of

the nutrients under study, are also among the least frequently consumed by sample households

(Figure B1).

Next, I test if extreme heat affects the number of households with adequate energy intake.

Figure 5 presents the estimates for the marginal effect of one additional HDD in the last grow-

ing season on the percentage of households with energy intake above 100%, 80%, and 60%

adequacy. It shows that there is no statistically significant effect of extreme heat on the percent-

age of households that consume 100% or 80% of their energy requirements. In contrast, I find

that an additional HDD in the last growing season increases the percentage of households with

insufficient caloric intake - defined as not meeting at least 60% of their energy requirements -

by 0.16 percentage points, however, this increase is not statistically significant at conventional

levels (p = 0.112). These results suggest that extreme heat could exacerbate undernutrition for

households already experiencing it at extreme levels.

Figure 5 shows the impact of extreme heat on household nutrient adequacy. Hot growing

seasons negatively affect protein and iron adequacy among sample households. For protein,

one additional HDD in the prior growing season increases the percentage of households below

the 100% and 80% adequacy thresholds by 0.26 and 0.22 percentage points, respectively. For
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Figure 5. Effect of HDD on nutrient adequacy. Each nutrient adequacy represents a dummy
equal to one if a household meets the intake requirement at various thresholds (60%, 80%, and
100%). Coefficients have been divided by the respective dependent variable sample mean, and
can be interpreted as the relative percentage change in the likelihood of meeting the require-
ment for one additional HDD. Conley spatial HAC standard errors are used to build the 95%
confidence intervals.

iron, it increases the percentage of households below the 80% and 60% adequacy thresholds by

0.25 and 0.19 percentage points, respectively. The effect sizes are smaller for the 60% nutrient

adequacy threshold. This can be explained in part by the smaller share of households near or

below this threshold (Figure 2). Lastly, I find no evidence that extreme heat in the last growing

season pushes households below nutrient adequacy levels for zinc and vitamin A intake, at any

of the considered levels.

In Figure B10, I examine what is driving these nutrient adequacy results by estimating

the effect of extreme heat on energy intake by food group. The post-harvest intake of staple

foods, including cereals, roots and tubers, and oil/fats, is not affected by extreme heat in the

growing season. These food groups represent the three most important sources of energy for

the average Nigerian farm household, with 54.8% for cereals, 17.1% for root & tubers, and

12.3% for oil/fats (Figure B2). This participates in explaining the null effect of extreme heat

on total energy intake in Table 2. On the other hand, an additional HDD in the last growing

season reduces the post-harvest intake of more nutritious foods, which are important sources of
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protein and iron, such as vegetables (-0.68%), meat (-0.33%), and pulses (-0.38%), as well as

fruits (-0.30%).

5.3 Farm household response: commercialization and food purchase

As shown in Figure 4 and Table C3, farm households experience a negative shock to their

harvest following extreme heat during the growing season. I am interested in examining their

ex-post (i.e., post-harvest) adaptation responses and test the hypothesis laid out in Section 2.

First, in Table C5, I examine changes in total energy intake, by source of consumption, i.e.,

purchased, own-produced, or gifted. Purchased foods represent approximately half of the total

energy intake for the average household in the sample (49.5%), while own-produced foods

represent 46.4%, and the rest is received as assistance or gift (4.1%) (Table 1). Extreme heat

has no statistically significant effects on total energy intake from any consumption source, with

a negative sign for the impact of one additional HDD on total energy purchased. Second, in

Figure 6, I examine changes in purchased and own-produced calorie intake separately for each

food group. Extreme heat has no statistically significant effects on energy intake from own-

produced food, except for fruits. On the other hand, an additional HDD in the last growing

season reduces energy intake from purchased vegetables (-0.75%), meat (-0.30%), and pulses (-

0.49%).18 These results suggest an adjustment toward meeting energy sufficiency through own

production, mainly composed of staple cereals, roots, and tubers, rather than purchasing more

nutritious foods, thereby worsening dietary quality.

Two pathways can support an increased post-harvest reliance on own-produced food follow-

ing a negative agricultural shock. First, households could reduce commercialization. Second,

households could modify their own-produced food consumption smoothing behavior by priori-

tizing own-produced food intake immediately post-harvest, thereby risking the faster depletion

of these resources.

Table 3 reports the effect of extreme heat on commercialization and household expenditure.

In line with the hypothesis in Section 2 and the above-mentioned first potential pathway behind

18Purchased energy represents the majority of total energy intake from vegetables (84.2%), meat (88.0%), and
pulses (66.5%) (Figure B4).
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Figure 6. Effect of HDD on energy intake, by food group and source of consumption.
Each food group is expressed as the logarithm of total energy intake, thus coefficients can
be interpreted as the relative percentage change for one additional HDD. I set the dependent
variable (logarithm) to zero for all zero consumption values and include a dummy variable in
the regression to account for this data transformation. Conley spatial HAC standard errors are
used to build the 95% confidence intervals.

increased reliance on own-produced food post-harvest, I find that one additional HDD in the

last growing season has a negative impact on both the extensive and intensive margins of com-

mercialization. It decreases the likelihood of selling at least some harvested quantities by 0.40

percentage points (or relatively by 0.99%) and the share of total harvest sold by 0.18 percentage

points (relatively by 0.90%).

In line with findings by others in the literature (Carpena, 2019; Dillon et al., 2015), Ta-

ble 3 also shows that the drop in crop production is accompanied by lower household spending,

likely aggravated by reduced commercialization as a share of total harvest. Indeed, all HDD

coefficients are negative and statistically significant. Total expenditure, a proxy for income in

the development economics literature (Carletto et al., 2021), decreases by 0.74% for each addi-

tional growing season HDD.19 Extreme heat also decreases food purchases. The higher income

19Total expenditure includes a valuation of own-produced consumption, reducing classical measurement error
and capturing resources actually available for nutrition.
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Total exp Food exp Non-food exp Seller Share sold
GDD in growing season -0.0008*** -0.0001 -0.0006*** -0.0004*** -0.0002***

(0.0003) (0.0002) (0.0001) (0.0001) (0.0001)
HDD in growing season -0.0074*** -0.0034** -0.0075*** -0.0040*** -0.0018***

(0.0017) (0.0016) (0.0014) (0.0011) (0.0006)
Household FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Month-of-int FE Yes Yes Yes Yes Yes
Precipitations Yes Yes Yes Yes Yes
R2 0.661 0.591 0.749 0.471 0.470
Observations 8,146 8,146 8,146 5,970 5,970
Mean Y . . . 0.405 0.199

Table 3. Temperatures, expenditure, and commercialization. Expenditure is expressed in
logarithms, thus coefficients can be interpreted as the relative percentage change for one addi-
tional HDD. Annualized expenditure in USD 2020 (originally, food: last 7 days; non-food: last
month or last 12 months). Food expenditure represents purchased food. Total expenditure in-
cludes a valuation of own-produced consumption. Expenditure information is missing for wave
5. Seller is a dummy variable equal to one if a household is selling any harvested quantities.
Information on sold harvested quantities is missing for 33.7% of households (either missing or
set to missing because it is higher than harvested quantities or negative). I set the dependent
variable (logarithm) to zero for all zero consumption values and include a dummy variable in
the regression to account for this data transformation. Conley spatial HAC standard errors (in
parentheses). exp: expenditure. FE: fixed effects.

elasticity of the demand for more nutritious foods, particularly vegetables and meat, compared

to staples (Colen et al., 2018), explains the targeted cuts in purchases for these foods (Figure 6).

This pattern is consistent with Bennett’s law operating in reverse: when resources contract, diets

de-diversify away from purchased nutritious foods toward staples (Headey et al., 2014; Ecker

and Hatzenbuehler, 2022).

Additionally, it is important to understand how extreme heat impacts non-food expenditures.

Non-food spending is often a reliable indicator of a household’s economic well-being (Deaton,

1997). It also has consequences for a household’s food budget. This relationship could go in

two directions. Households might cut back on non-food items to protect food purchases, or,

alternatively, non-food purchases could end up limiting the funds available for food purchases.

I show that one additional growing season HDD leads to a 0.75% decrease in non-food expen-

diture, supporting the former. As can be seen in Table C6, extreme heat affects most types of

non-food spending, including housing, communication and transport, and clothing. The largest

negative effects are observed for housing, where one additional HDD in the previous growing
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season results in a 0.94% decrease in expenditure. Housing includes expenses on utilities (wa-

ter, electricity, gas, fuels, and refuse collection), maintenance, domestic household services, and

rent. Although the HDD coefficient is negative for education, it is not statistically significant at

conventional levels.

Next, I examine the impact of the uncovered post-harvest household risk-minimizing strat-

egy, which consists of prioritizing own-produced food intake post-harvest to ensure energy

sufficiency, on consumption smoothing. For this, I estimate the heterogeneous effect of one

additional HDD by survey months. Interviews for the Nigeria LSMS-ISA post-harvest house-

hold questionnaire are conducted between January and April, with the majority taking place

in February and March.20 Table 4 shows that the negative impact of extreme heat on dietary

diversity, as well as protein and iron suboptimal adequacy (80%), intensifies with time since

harvest.21 This is likely driven by both the depletion of the income collected from the sale

of harvest, as illustrated by a stronger reduction in food purchases in March-April compared

to January-February, and the depletion of home-grown food reserves with a decline in own-

produced food intake in March-April (Table C7). The latter is caused by a lesser energy intake

from own-produced cereals, vegetables, and pulses (Table C8). This results in a more adverse

impact on insufficient energy adequacy (60%), however, non-statistically significant at conven-

tional levels (Figure B12).

5.4 Heterogeneity and potential moderators

I explore heterogeneity in the effect of the last growing season temperatures on household nu-

trition to identify the most vulnerable populations. Table 5 presents heterogeneity by head

sex and education, as well as the presence of children below five years old in the household.

Results suggest that the effect of HDD on dietary diversity and nutrient adequacy is weaker

among households with heads with formal education. On the other hand, the impact of extreme

heat on malnutrition is qualitatively similar between households with and without a female

head. Formal education could be correlated with a higher ability to participate in non-farm

20Only the post-harvest household questionnaire for wave 4 is collected in January (Table C2). Thus, I conduct
a robustness check omitting wave 4 (Table C9), finding similar results.

21Figure B12 presents the results for this heterogeneity analysis by adequacy threshold for each nutrient.
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HDDS Adq prot Adq iron Food exp Non-food exp Share sold
GDD -0.0003 0.0001 0.0001 0.0001 -0.0006*** -0.0002**

(0.0004) (0.0001) (0.0001) (0.0002) (0.0001) (0.0001)
GDD × Mar-Apr -0.0002 -0.0002*** -0.0002*** -0.0003*** -0.0000 -0.0000

(0.0001) (0.0000) (0.0001) (0.0001) (0.0001) (0.0000)
HDD -0.0017 -0.0012 -0.0015 -0.0024 -0.0074*** -0.0017***

(0.0030) (0.0009) (0.0009) (0.0016) (0.0013) (0.0006)
HDD × Mar-Apr -0.0047*** -0.0011*** -0.0011** -0.0016** 0.0004 0.0001

(0.0015) (0.0004) (0.0004) (0.0007) (0.0006) (0.0003)
Household FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Month-of-int FE Yes Yes Yes Yes Yes Yes
Precipitations Yes Yes Yes Yes Yes Yes
R2 0.598 0.484 0.493 0.620 0.749 0.471
Observations 9,006 9,006 9,006 8,146 8,146 5,970
Mean Y 5.576 0.829 0.750 . . 0.199

Table 4. Temperatures, dietary diversity, nutrient adequacy, expenditure, and commer-
cialization, by survey months. Adequacy indicators are set to 80% adequacy levels. Coef-
ficients on HDDS can be interpreted as the absolute change in the HDDS for one additional
HDD. Coefficients on adequacy indicators can be interpreted as percentage-point change in the
likelihood for one additional HDD. Expenditure is expressed in logarithms, thus coefficients
can be interpreted as the relative percentage change for one additional HDD. Annualized ex-
penditure in USD 2020 (originally, food: last 7 days; non-food: last month or last 12 months).
Food expenditure represents purchased food. Expenditure information is missing for wave 5.
I set the dependent variable (logarithm) to zero for all zero consumption values and include a
dummy variable in the regression to account for this data transformation. Information on sold
harvested quantities is missing for 33.7% of households (either missing or set to missing be-
cause it exceeds the harvested quantities or is negative). Conley spatial HAC standard errors (in
parentheses). Adq: Adequacy. FE: fixed effects. HDDS: Household dietary diversity score.

employment. However, incomplete labor markets may limit the availability of such non-farm

opportunities (Dillon et al., 2019). I investigate this further in Section 5.6. A complementary,

compositional channel is that education is positively associated with household diet quality net

of resources (Rashid et al., 2011). Mechanistically, schooling could attenuate the impact of

shocks by enhancing nutritional knowledge, inventory management, or financial planning to

smooth consumption when extreme heat tightens resource constraints. Lastly, the nutrition of

farm households with young children, who require protein and iron for growth (Black et al.,

2013), is the most adversely impacted. This finding is concerning, given that over 30% of

children below five years old remain stunted in Nigeria (Akombi et al., 2017).

It is interesting to investigate potential moderators of the adverse effects of extreme heat

on dietary diversity and nutrient adequacy to inform strategies for improving resilience to cli-
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HDDS Adq prot Adq iron Food exp Non-food exp Share sold

HDD -0.0050* -0.0021*** -0.0023*** -0.0039** -0.0067*** -0.0018***
(0.0028) (0.0008) (0.0008) (0.0016) (0.0014) (0.0006)

HDD × Head formal edu 0.0038*** 0.0010*** 0.0011*** 0.0021*** -0.0003 0.0003
(0.0014) (0.0003) (0.0004) (0.0006) (0.0006) (0.0003)

HDD -0.0053* -0.0022*** -0.0024*** -0.0042*** -0.0075*** -0.0017***
(0.0028) (0.0008) (0.0009) (0.0016) (0.0014) (0.0006)

HDD × Head female 0.0041 0.0004 -0.0004 0.0034** 0.0011 0.0000
(0.0027) (0.0007) (0.0007) (0.0015) (0.0014) (0.0007)

HDD -0.0025 -0.0019** -0.0019** -0.0025 -0.0080*** -0.0014**
(0.0028) (0.0008) (0.0009) (0.0017) (0.0014) (0.0006)

HDD × Age < 5 yo -0.0044*** -0.0005* -0.0010** -0.0024*** 0.0006 -0.0006*
(0.0013) (0.0003) (0.0004) (0.0007) (0.0006) (0.0003)

Mean Y 5.576 0.829 0.750 . . 0.199

Table 5. Effect of HDD on dietary diversity, nutrient adequacy, expenditure, and commer-
cialization, by household characteristics. This table displays the results from 16 regressions,
under the main specification. Adequacy indicators are set to 80% adequacy levels. Coefficients
on HDDS can be interpreted as the absolute change in the HDDS for one additional HDD.
Coefficients on adequacy indicators can be interpreted as percentage-point change in the likeli-
hood for one additional HDD. Expenditure is expressed in logarithms, thus coefficients can be
interpreted as the relative percentage change for one additional HDD. Annualized expenditure
in USD 2020 (originally, food: last 7 days; non-food: last month or last 12 months). Food ex-
penditure represents purchased food. Expenditure information is missing for wave 5. I set the
dependent variable (logarithm) to zero for all zero consumption values and include a dummy
variable in the regression to account for this data transformation. Information on sold harvested
quantities is missing for 33.7% of households (either missing or set to missing because it is
higher than harvested quantities or negative). Conley spatial HAC standard errors (in parenthe-
ses). Adq: Adequacy. edu: education. HDDS: Household dietary diversity score.

mate change. Closeness to markets, livestock management, and income diversity have all been

found to be correlated with improved nutrition in Sub-Saharan Africa (Babatunde and Qaim,

2010; Nguyen and Qaim, 2025; Headey et al., 2018). I examine these potential moderators

by estimating heterogeneous responses to extreme heat. I interact HDD with the logarithm of

the distance in kilometers to the nearest population center with more than 20,000 inhabitants.

This represents a proxy for access to food markets in the literature, both for selling harvest and

purchasing food (Nguyen and Qaim, 2025). I conduct similar interactions with three dummy

variables: one equal to one if the household managed at least one livestock head in the last

12 months, one equal to one if the household ran at least one non-farm entreprise in last 12
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months, and one equal to one if the household head was employed in a wage job in the last

seven days before the post-harvest interview. Results suggest no moderating effects on nutri-

tional indicators for livestock management and non-farm enterprise. A higher distance to the

closest population center is negatively associated with the effect of an additional HDD on the

likelihood of a household meeting suboptimal iron adequacy (80%), although this association is

only statistically significant at the 10% level. A post-harvest wage job is positively associated

with the effect of an additional HDD on the likelihood of a household meeting suboptimal iron

adequacy and on the share of harvest sold, suggesting that off-farm employment may play a

buffering role, reducing the need for households to pursue the risk-minimization strategy high-

lighted in Section 5.3 (Table C10).

I investigate the non-moderating role of livestock management further. Managing livestock

could serve as both a nutritional buffer, as animal-sourced foods represent a source of quality

protein among farm households, and an income buffer through the sale of livestock and their

products (Headey et al., 2018; Rosenzweig and Wolpin, 1993). First, I estimate the effect of

extreme heat on the number of livestock heads managed by panel farm households involved

in livestock over the last 12 months.22 Given the year-round exposure of livestock and the

lack of a well-defined ‘growing temperature range’ for animals, I adopt a binned temperature

approach rather than HDD. This allows me to flexibly estimate the nonlinear effects of discrete

temperature extremes on herd outcomes over the last 12 months.23 Replacing a day with an

average temperature < 31◦C by a day > 35◦C in the last 12 months reduces the number of large

ruminant heads under management (bulls, cows, steers, heifers, calves, or ox) by 7.22%, with

no statistically significant effects on the number of small ruminant heads under management

22I follow the same data processing criteria as for panel farm households, as described in Section 3. Only
households engaged in livestock management and observed for at least three waves were retained. Furthermore,
households must have at least two waves with strictly positive livestock heads. This selection process yields a final
sample of 5,627 observations from 1,949 unique households, accounting for 62.48% of the panel farm household-
year observations across the five survey waves of the Nigeria LSMS-ISA.

23I depart from the degree-days specification used elsewhere in the paper and instead use temperature bins for the
livestock analysis for two reasons. First, the outcome variable (i.e., number of livestock heads) is measured as an
annual stock, not tied to a growing season. A 12-month exposure window, combined with livestock’s physiological
response to extreme heat, is likely to exhibit nonlinear effects at extreme temperatures. Second, unlike crops,
livestock lack a defined “growing” temperature range. Using temperature bins allows for easier interpretation of
high-heat exposure episodes across the full year, rather than relying on cumulative heat intensity as in HDD, which
is better suited to crop yield modeling.
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(goats or sheep). Days with average temperature between 31◦C and 35◦C have no statistically

significant effects (Figure 7).

Figure B11 shows that this result is driven by increased death or losses of large ruminants,

with an additional day with an average temperature > 35◦C in the last 12 months increasing

the number of dead or lost large ruminants by 40.04%. This high magnitude is explained by

the rare occurrence of such days in the sample, with the mean number of days with an average

temperature > 35◦C being 0.78 per year. Thus, the effect being modelled represents a 128%

increase in such days. I find no evidence that these results are driven by increased slaughter,

either for sale or own-consumption.24 This finding, where extreme heat reduces large but not

small ruminant herds, is directly supported by the biological literature. Large ruminants, partic-

ularly high-production cattle, generate significant internal (metabolic) heat to stay alive, grow,

or produce milk. Their large body mass, relative to their skin’s surface area, makes it physically

difficult for them to shed this internal heat. Small ruminants, in contrast, generate less metabolic

heat and have a larger surface-area-to-mass ratio, allowing them to cool down more efficiently

and be more resilient to heat shocks (Kadzere et al., 2002; Silanikove, 2000). Finally, I find

that the purchase of small ruminants declines by 9.28% for each additional day with an average

temperature > 35◦C. This suggests that the income shock imposed by extreme heat prevents

households from making such types of asset purchases.

5.5 Robustness checks

Table 6 presents several checks on the robustness of my main results to alternative model speci-

fications. I only report the estimate associated with HDD, with each row representing a different

specification.

Row 1 shows robustness to a less parsimonious model that includes household-level con-

trols, which may be time-varying and thus not captured by household fixed effects, as well

as a soil fertility index constructed by Bentze and Wollburg (2024). This index is a compos-

ite measure of soil quality, built using principal component analysis to aggregate seven binary

24Results are available upon request.
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Figure 7. Temperatures and livestock heads under management. Poisson pseudo-maximum
likelihood estimations using the computationally efficient estimator for Poisson regressions us-
ing high-dimensional fixed effects developed by Correia (2016). Coefficients are exponentiated
and presented as incidence rate ratios (IRR). Coefficients are presented as incidence rate ratios.
Reference bin < 31C. Weather over the last 12 months (number of days in each bin). Mean
number of annual days with average temperature > 35C: 0.6. 95% confidence intervals are
built using robust clustered standard errors at the household level.

indicators of soil constraints.25 Row 2 estimates the main specification with robust clustered

standard errors at the household level instead of spatial HAC standard errors. The statistical

significance of my results remains unchanged under this alternative (and arguably simpler) as-

sumption about the error structure. A partial refresh of the panel sample was undertaken in wave

4 (Table C1). Additionally, the representativeness of the survey was compromised during wave

4 due to security issues, which prevented data collection in certain locations. In row 3, I show

the robustness of my findings to the exclusion of the latter waves 4 and 5. These later waves

include only a subsample of panel households and rely on a long consumption recall period (30

days). Lastly, in row 4, I allow for different HDD thresholds for the Southern and Northern

25The binary indicators are: nutrient availability, nutrient retention, rooting conditions, oxygen availability,
excess salts, toxicity, and workability. These indicators are provided with the LSMS-ISA microdata.
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Harvest (kg) HDDS Adq prot Adq iron

1. HH & soil char controls -0.0154*** -0.0050* -0.0019** -0.0020**
(0.0047) (0.0028) (0.0008) (0.0009)

2. Clustered SE at HH level -0.0154*** -0.0053** -0.0022*** -0.0025***
(0.0020) (0.0022) (0.0005) (0.0006)

3. Excluding waves 4 and 5 -0.0140*** -0.0069** -0.0027*** -0.0029***
(0.0051) (0.0032) (0.0010) (0.0011)

4. Different HDD thr by region -0.0117** -0.0055* -0.0034*** -0.0044***
(0.0049) (0.0029) (0.0009) (0.0011)

Table 6. Robustness checks. This table displays the results from 16 regressions, under the
main specification. HH and soil characteristics added: head age, head age squared, head sex,
head education, log of HH size, and weighted average soil fertility index (plot level). Regional
HDD thresholds: Southern 30◦C, Northern 31◦C. Adequacy indicators are set to 80% adequacy
levels. Total harvest is measured in logarithms, thus coefficients can be interpreted as the rela-
tive percentage change for one additional growing season HDD. Coefficients on HDDS can be
interpreted as the absolute change in the HDDS for one additional HDD. Coefficients on nutri-
ent adequacy can be interpreted as percentage-point change in the likelihood for one additional
HDD. Conley spatial HAC standard errors (in parentheses, except if otherwise stated). Adq:
Adequacy. HDDS: Household dietary diversity score. Adq: adequacy. HH: households. prot:
protein. SE: standard errors. thr: threshold.

zones.26 Results are similar to the baseline specification, with a slightly lower coefficient for

total harvest and higher coefficients for protein and iron adequacy (in absolute terms).

My identification hinges on the absence of unobserved factors that could plausibly explain

the estimated effects. To probe the assumption and verify that high growing season temperatures

truly drive the documented effects, I carry out similar falsification exercises as in Mayorga et

al. (2025). I randomly reassign temperatures and precipitations across clusters, generate 1,000

such placebo weather datasets, and re-estimate my main specification. Because this permutation

breaks the spatial link between actual weather and outcomes, I expect no systematic relationship

between heat exposure and changes in the dependent variables. Figure B13 plots the sampling

distribution of the placebo estimates of the HDD coefficients, alongside the corresponding point

estimate from Table C3, Table 2, and Figure 5. The placebo distributions are approximately

26These zone-specific thresholds were chosen by replicating the analysis shown in Figure 4 in the Southern and
Northern zones separately. HDD thresholds with the best model fit were respectively 30◦C and 31◦C. The results
from this exercise are available upon request.
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normal and centered at zero. In contrast, my main results coefficients (vertical dotted lines) lie

far from the tails of the placebo distributions, indicating that the observed effects are unlikely

to be due to random assignment.

I also probe how sensitive the results are to alternative choices of the distance and temporal

lag parameters used for Conley (1999)’s spatial-HAC standard errors. Table C11 shows that my

main results remain stable across distance cutoffs from 50 to 200 km and temporal lags from 1

to 10 years. Using lower distance cut-offs leads to higher statistical significance for the HDDS

estimate. However, given the likely significant spatial autocorrelation in both the independent

variable and dependent variables, a wider distance cutoff is justified.

In this study, I express the continuous outcomes (mainly energy and nutrient intake) in log-

arithms because the data are very unevenly distributed (positively skewed) (Figure B3). Taking

the natural log reduces skewness and stabilizes variance. This transformation also yields elas-

ticities in interpretation. I provide a robustness check measuring household energy intake at the

food group level in levels rather than logarithms (i.e., in kilocalories). I then divide the effect

by the mean intake to express results as a marginal change for one additional HDD in the last

growing season. The results of this sensitivity analysis in Figure B14 show that the direction

and significance of coefficients are similar to Figure B10.

5.6 Additional pathways

Prices as omitted variables

A potential concern is that my results might be influenced by changes in relative prices.

Extreme heat shocks can reduce aggregate supply and increase crop and food prices. A crop

price increase may create incentives to increase harvest sales. On the other hand, a price increase

in nutritious foods may incentivize reliance on staples and own-produced foods to ensure energy

sufficiency, potentially leading to a reduction in commercialization. The main specification

includes growing season fixed effects. If agricultural and food markets are well integrated

nationally, this approach would control for such price effects. However, this is unlikely to be

the case in Nigeria, where evidence points to incomplete or uneven market integration (Dillon

and Barrett, 2016; Amare et al., 2024). Thus, I test the impact of extreme heat in the growing
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season on post-harvest community-level (i.e., enumeration area or cluster) food prices using the

main specification. Prices are collected during the same survey month as for food expenditure

and consumption information in a given enumeration area. I have selected the following food

items because of their highest coverage in the data and to represent each of the nine HDDS

food groups used in this analysis: maize, potato, onion, banana, beef, egg, fish, groundnut, and

milk. Current (nominal) retail prices in local currency (Naira) are harmonised per kilogram and

converted to 2015 constant (real) prices using the food consumer price index from the UN Food

and Agriculture Organization (FAO) (FAO, 2025).

For the majority of food groups, Table C12 shows that there is no statistically significant

relationship between growing season heat and post-harvest local prices. There is one notable

exception. An additional HDD in the last growing season increases the price of eggs by 2.96%.

The overall lack of a price response is consistent with findings from a previous cross-sectional

analysis in Nigeria (Dillon et al., 2015). These results likely reflect my focus on the immediate

post-harvest period, whereas price adjustments may take several months to materialize as stocks

deplete and markets clear. For instance, evidence from Niger shows that drought-induced price

increases emerge only around six months after harvest (Kakpo et al., 2022).

The role of post-harvest off-farm employment

I consider the effects of extreme heat on ex-post labor activity, which could impact income

and thus purchasing power. High temperatures can negatively impact employment by either

impairing worker health or reducing overall labor demand. Households can also seek additional

employment as an adaptation response to compensate for the negative effects of extreme heat

on agricultural income (Colmer, 2021). Table 7 shows that point estimates are near zero and

that heat in the growing season has no statistically significant effects on post-harvest small-

own business or wage employment, either on the extensive or intensive margin. Given the

low baseline engagement in wage employment (7.3%) and modest participation in small own-

business (18.1%), scope to expand off-farm hours appears limited. This pattern is consistent

with binding time and market frictions: households do not substantially reallocate from farm to

non-farm work, nor do they add net hours off-farm, even after experiencing adverse heat. These
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findings are consistent with thin and incomplete labor markets (Rosenzweig, 1988). The labor-

income smoothing margin remains muted, helping explain why expenditure falls (Table 3).

Extensive margin Intensive margin Last 12m

Farm SOB Wage Farm SOB Wage NFB
GDD in growing season -0.0002 0.0000 0.0000 -0.0004* -0.0000 0.0000 0.0000

(0.0001) (0.0000) (0.0000) (0.0002) (0.0001) (0.0000) (0.0001)
HDD in growing season -0.0007 0.0002 0.0001 -0.0018 -0.0001 0.0004 0.0003

(0.0007) (0.0005) (0.0003) (0.0017) (0.0009) (0.0004) (0.0007)
Household FE Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes
Month-of-int FE Yes Yes Yes Yes Yes Yes Yes
Precipitations Yes Yes Yes Yes Yes Yes Yes
R2 0.552 0.539 0.583 0.746 0.865 0.917 0.634
Observations 8,937 8,937 8,931 8,930 8,938 8,938 9,006
Mean Y 0.509 0.181 0.073 . . . 0.519

Table 7. Effect of HDD on post-harvest labor activity. Labor activity in the last 7 days before
interview. Conley spatial HAC standard errors (in parentheses). FE: fixed effects. NFB: Non-
farm business. SOB: small-own business.

Changes in household composition

Extreme heat during the growing season may reshape household composition. This could

have consequences on the farm’s productive capacity, for example, if it changes the number of

working-age household members. It could also change the total amount of food necessary for

the household. Three effects may be at play: fertility, migration, and mortality. I test these

channels by estimating regressions from my main specification with the number of children, the

number of working-age adults, and the number of elderly in the household as the outcome. Re-

sults are shown in Table C13. No coefficient is statistically significant at any conventional level.

As expected from the climate-health literature, the sign of the coefficient on HDD is negative

for young children and the elderly. The latter are more likely to die from heat shocks (Carleton

et al., 2022), whereas for the former, fertility may be negatively impacted, for example, by in-

creasing the risk of delivery complications for pregnant women (Barreca and Schaller, 2020).

On the other hand, the coefficient on HDD is positive for the number of working-age adults in

the household. Interpreted through a liquidity-constraint lens in poor rural settings, hot growing

seasons may temporarily inhibit out-migration and induce short-run co-residence or even return
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migration (Hirvonen, 2016; Cattaneo and Peri, 2016), increasing the number of working-age

adults at home, even in the absence of a higher farm labor demand (Table C15).

Other coping mechanisms

My main results suggest that farm households respond to temperature-induced crop losses

(ex-post) by selling a smaller share of harvested crops to maintain calories, which consequently

tightens cash and reduces purchases of nutrient-dense foods, thereby degrading dietary quality.

In this section, I examine other coping mechanisms that have been previously documented.

First, I examine ex-ante productive adaptation responses in terms of input use and crop

mix. Consistent with previous studies (Mayorga et al., 2025; Jagnani et al., 2019), I find that

households reduce the use of productivity boosting inputs, such as fertilizers. However, I do

not find evidence of increased use of pesticides as protective inputs. While mixed cropping,

as opposed to monocropping, may allow farmers to dilute their risk from adverse productive

shocks (Shaffril et al., 2018), I find no evidence of increased mixed cropping in hotter seasons

(Table C14).

Second, I study the effect of growing season heat on farm labor allocation during the agri-

cultural season. Table C15 shows no direct relationship between extreme heat and farm labor

inputs. This is consistent with previous results in Nigeria (Mayorga et al., 2025). From a

consumption-smoothing perspective, the relevant margin is off-farm earnings. Unfortunately,

the LSMS-ISA does not record within-agricultural-season off-farm labor. Prior work in other

contexts find that extreme weather increases off-farm labor supply as households seek liquidity

(Branco and Féres, 2021; Kochar, 1999). If households face a binding time constraint, holding

on-farm work fixed leaves little slack to expand off-farm work, implying a limited scope for

within-agricultural-season labor reallocation toward cash income. Lastly, I find no effect of ex-

treme heat in the growing season on the likelihood of a household owning a non-farm business

(Table 7).
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5.7 Back-of-the-envelope uniform warming projections

I provide a projection exercise in which I simulate changes in harvest, dietary diversity, and

protein and iron adequacy under a uniform +1◦C warming scenario. This approximately cor-

responds to the projected warming in Nigeria under the SSP2-4.5 “intermediate” greenhouse

gas emissions scenario by 2050 based on the Coupled Model Intercomparison Project Phase 6

(CMIP6) (World Bank, 2024).27 I calculate the expected change in GDD and HDD and then

estimate the expected effect on the outcomes of interest by multiplying the variations by the

corresponding estimates from my main specification (Table C3, Table 2, and Figure 5). This

exercise deliberately isolates the impact of temperature, employing a ceteris paribus assump-

tion. It does not endogenize other complex phenomena associated with climate change, such as

biophysical shifts or broader socioeconomic adaptations. Consequently, the findings should not

be interpreted as a comprehensive forecast.

Results are reported in Table 8. I find that a uniform +1◦C warming scenario would de-

crease harvest by 27.38% and subsequently dietary diversity by 0.29%, protein adequacy by

4.04 percentage points (3.18 p.p. for 80% adequacy), and iron adequacy by 1.56 percentage

points (3.54 p.p. for 80% adequacy). These percentage changes correspond to an increase

of around 1.62 million and 0.63 million households with inadequate protein and iron intake

(1.28 and 1.42 million households for 80% adequacy), respectively, out of Nigeria’s 2022 farm

household population of 42 million households (National Bureau of Statistics, 2024).

The projected yield impact is larger than the latest −10.8% estimate for Africa by 2050 un-

der RCP4.5 from Hultgren et al. (2025). The latter is based on subnational aggregate agricultural

production data. Nevertheless, the results from my projection exercise are in line with those of

Wollburg et al. (2024), who found that climate shocks reduced crop production among small-

holder farmers by 29% in Sub-Saharan Africa between 2008 and 2019, using LSMS-ISA data.

While smallholder farmers represent the majority of crop production in Sub-Saharan Africa, the

commercial farm sector is rapidly increasing (Jayne et al., 2022). Commercial farming may be

27Mean annual surface temperature in Nigeria was 27.7◦C in 2014 (last year of the historical reference period
1950-2014, used to train the CMIP6) and is expected to be 28.65◦C by 2050 under SSP2-4.5 “moderate” scenario
by 2050 based on CMIP6 (World Bank, 2024).
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Effect of uniform +1◦C temperature increase

∆ GDD 43.601
∆ HDD 12.951
∆ Harvest (%) -27.378
∆ HDDS (%) -0.288
∆ Protein 100% adequacy (p.p.) -4.038
∆ Protein 80% adequacy (p.p.) -3.183
∆ Iron 100% adequacy (p.p.) -1.556
∆ Iron 80% adequacy (p.p.) -3.538

Table 8. Predicted effects of a uniform +1◦C warming scenario. HDDS: household dietary
diversity score. p.p.: percentage points.

more resilient to climate shocks, with larger farm sizes and better access to agricultural inputs.

6 Discussion

This paper set out to identify how extreme heat during the growing season affects post-harvest

nutrition outcomes for smallholder farm households in Nigeria, extending beyond energy suf-

ficiency to focus on nutrient adequacy. A central objective was to shed light on household

adaptation responses to temperature-induced crop losses in terms of consumption, commercial-

ization, and purchases. Using panel microdata and exploiting quasi-random within-household

variations in weather across growing seasons, I demonstrate that extreme heat reduces harvested

quantities but has no immediate impact on post-harvest energy intake, while exacerbating mi-

cronutrient shortfalls.

I document a behavioral response to the production shock. Households increase reliance on

own-produced foods and retain a larger share of their harvest, mainly composed of cereals and

tubers, to preserve calorie intake. Combined with the temperature-induced harvest shortfall,

the decreased share of harvested crops sold reduces cash income and food purchases, with

cuts falling disproportionately on cash-intensive and nutrient-dense items, such as vegetables,

pulses, and meat. While safeguarding energy intake, this ex-post adaptation strategy degrades

diet quality. This is consistent with predictions from non-separable farm household models in
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the presence of incomplete food and labor markets and binding caloric constraints.

A uniform +1◦C warming is associated with an additional 1.62 million and 0.63 million

Nigerian households with inadequate protein and iron intake. The nutritional impacts are sig-

nificantly larger for households with children under five years old, a concerning finding given

the crucial role of these nutrients in linear growth, cognitive development, and immune func-

tion during early childhood (Black et al., 2013). Moreover, these estimates are likely lower

bounds. Climate change may further erode dietary quality by lowering the nutrient content of

foods, thereby amplifying nutrient inadequacies (IPCC, 2019). Although my estimates capture

only responses up to four months post-harvest, I show that adverse nutritional effects worsen

as time since harvest elapses. As stocks deplete, the ex-post strategy that initially safeguards

calories may also fail to maintain energy sufficiency; a transition that future work could track

with high-frequency panel survey data.

To my knowledge, Stainier et al. (2025) represents the only other study that separates own-

produced from purchased foods when mapping climate shocks to diets. Both studies document

diet-quality losses following hot growing seasons; however, the direction of the market response

differs. In rural India, Stainier et al. (2025) find households purchase more to offset own-

production shortfalls, enabled by a labor reallocation into non-agricultural work. In Nigeria,

I find no post-harvest expansion of off-farm labor and, consequently, no compensating rise in

food purchases; instead, households sell less and buy less. This may be explained by relatively

more complete rural labor markets in India.28 The absence of an operative labor channel in

Nigeria maps into a defensive autarkic behavior and opposite purchase responses.

I acknowledge a number of limitations to my analysis. First, food consumption is recorded

with a 7-day recall in the first three waves and a 30-day recall in the last two. Shorter win-

dows tend to overstate mean intake (Mukherjee and Chaudhury, 2020). While this primarily

affects levels, bias could arise if recall behavior covaries with heat. Nevertheless, Villacis et

al. (2023) show that both recall periods perform as well in identifying food-insecure house-

holds in Nigeria. I mitigate this by including growing-season (survey-wave) fixed effects that

28Also, Stainier et al. (2025) do not examine the impact on commercialization and include rural non-farm house-
holds in their sample.
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absorb recall-window differences and common shocks. I also show the robustness of my re-

sults to excluding the last two waves. Second, because food may not be distributed equally

within households (D’Souza and Tandon, 2019), the effects of extreme heat on undernutrition

may be attenuated or masked for vulnerable subgroups, particularly if allocation shifts under

financial stress (Hazrana et al., 2025). I partly address this by examining heterogeneity by

household composition. However, a more comprehensive assessment would require individual-

level consumption data. Lastly, although my analysis accounts for zone-specific growing season

calendars and degree days thresholds (i.e., Southern vs. Northern), a more granular approach,

tailoring season timing and temperature cut-offs to crop-specific phenology and local climate,

would likely improve precision. Future work with finer seasonal data could reduce timing mis-

matches and strengthen inference across heterogeneous agro-climatic contexts.

Despite these shortcomings, this paper makes significant contributions to our understanding

of the consequences of extreme temperatures for household food utilization and nutrition, an is-

sue that remains understudied in the literature. Shifting from coarse indices to nutrient-specific

intake and adequacy measures reveals declines in diet quality that were previously obscured by

aggregate calorie intake metrics. Designing climate adaptation policy requires understanding

household responses to heat. Crucially, all core variables in this analysis (agricultural produc-

tion, livestock management, prices, consumption, and nutrition) are measured within the same

household-panel architecture, improving the internal consistency of estimated pathways and

reducing the scope for ecological fallacy.

Prior work shows that commercialization generally improves diet quality (Chegere and

Kauky, 2022; Ogutu et al., 2020), yet its nutrition gains are attenuated in the presence of cli-

mate shocks (Hazrana et al., 2025). However, the behavioral channel through which weather

shocks attenuate these gains has remained underexplored. By separating own-produced from

purchased intake and investigating the commercialization–consumption trade-off, this paper re-

veals a margin of adjustment not previously documented: households reduce the share of harvest

sold and secure energy intake through home-grown staple consumption, while cutting purchases

of nutrient-dense foods. Thus, climate shocks not only dampen the returns to commercialization

but also reduce commercialization itself, tightening cash constraints and transmitting the shock

38



into diet-quality losses. This immediate post-harvest response erodes the commercialization

pathway out of poverty (Barrett, 2008) and is likely relevant in other smallholder contexts with

incomplete markets.

Safeguarding nutrition under climate change necessitates moving beyond caloric sufficiency

to target nutrient-adequate diets that support healthy and active lives. It requires integrating

climate-risk mitigation with measures that keep smallholders engaged in markets and improve

their access to non-farm labor opportunities. Direct financial support could also help mitigate

nutritional losses (Premand and Stoeffler, 2022).
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Hogan, Elı́as Hólm, Marta Janisková, Sarah Keeley, Patrick Laloyaux, Philippe Lopez, Cristina Lupu,
Gabor Radnoti, Patricia de Rosnay, Iryna Rozum, Freja Vamborg, Sebastien Villaume, and Jean-Noël
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Appendix

A. Appendix Data Details

LSMS-ISA geographical offset

In the LSMS-ISA data, household confidentiality was preserved by applying a geographic offset
process to the location data. Initially, coordinates were aggregated to the enumeration area (EA)
level by calculating the mean location of each EA. These aggregate points were then randomly
displaced by up to 2 km in urban areas and up to 5 km in rural areas, with the latter receiving
a larger offset due to a higher disclosure risk in less dense settings. To further mask the data,
a small subset of rural clusters (1% in most samples) was subjected to a larger displacement of
up to 10 km. The maximum potential offset for any rural point is 10 km.

Weather data

I extract minimum and maximum daily temperatures from the European Centre for Medium-
Range Weather Forecasts (ECMWF) ERA5 climate reanalysis dataset at the 0.1◦ resolution, or
about 10×10km close to the equator (Hersbach et al., 2020). I estimate the average daily tem-
perature as the average of the daily maximum and daily minimum temperatures. Total precip-
itation data are extracted from the Climate Hazards Group InfraRed Precipitation with Station
(CHIRPS) database, which combines observations from real-time meteorological stations with
infra-red data at the 0.05◦ resolution, or about 5×5km close to the equator (Funk et al., 2015).
Total precipitation data is reaggregated using means to match ERA5’s resolution. The weather
data for a specific 0.1◦ resolution grid square is assigned to an LSMS-ISA cluster if the cluster
lies within that grid square. The low resolution of the weather data (≈ 10×10km) is larger than
the random geographic offsets applied to the coordinates. Therefore, the process of altering
the coordinates is not expected to meaningfully affect the effect of the weather variables on the
outcome variables.

Agricultural output data

Agricultural output data initially provided by the LSMS-ISA surveys at the plot level are aggre-
gated, i.e., summed up, at the household level, while the maximum values of indicator variables
(e.g., intercropped or not) are retained. Plots for which output amounts or size (area) are miss-
ing or not strictly positive are dropped. Agricultural output values are winsorised at the 99th
percentile. Harvest is valued using median prices per enumeration area. If there are fewer than
10 observed sales in the area, prices are calculated at a higher geographical level. Prices are
calculated independently for each crop type (Bentze and Wollburg, 2024). Harvest values are
converted to current USD and deflated to 2020 USD, using exchange rates and a deflator from
the World Bank. The same transformation is performed for household expenditure.

Food and nutrient consumption data

Households report food items consumed at home over the seven full days preceding the inter-
view date. Food consumption is categorized into three types: purchased, own-produced, and
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gifted (including transfers). Food items are grouped according to the Household Dietary Diver-
sity Score (HDDS) food grouping (FAO, 2011), including: A. Cereals; B. Roots and tubers; C.
Vegetables; D. Fruits; E. Meat, poultry, offal; F. Eggs; G. Fish and seafood; H. Pulses, legumes,
nuts; I. Milk and milk products; J. Oil/fats; K. Sugar/honey; and L. Miscellaneous.

Food and nutrient consumption data cleaning follows McCullough et al. (2024). Units of
consumption are harmonised to kilograms (kg) using conversion factors provided with the sur-
vey microdata. The interquartile range method is used to clean outliers of consumption per adult
equivalent at the household-item level for each country. The nutritional content of food items is
determined using published food composition tables from Africa (Lukmanji et al., 2008; Vin-
cent et al., 2020; Stadlmayr et al., 2012; Hotz et al., 2012; University of California, Berkeley,
2006), and completed with data from the United States Department of Agriculture (USDA)
(U.S. Department of Agriculture, Agricultural Research Service, 2019). For staple foods, I in-
corporate assumed fortification rates based on data from the Global Fortification Data Exchange
(Global Fortification Data Exchange, 2023). Further adjustments were made to account for ed-
ible portions and nutrient losses during cooking, using information from the USDA (Matthews
and Garrison, 1975; U.S. Department of Agriculture, Agricultural Research Service, 2007). As
in McCullough et al. (2024), food away from home consumption is not included due to a lack
of information about the items consumed to match them with nutrient content information.

I also follow McCullough et al. (2024) in constructing household-level estimated average
requirements (EAR) for energy and each nutrient. EAR per adult equivalent is based on the
age and sex composition of each household, assuming adults are of average weight and en-
gage in moderate activity levels. Dietary energy (DE) and protein requirements are taken from
FAO/WHO/UNU (2004). I establish EAR for vitamin A, total folate, and iron using the work of
the Institute of Medicine (2006), for zinc based on the International Zinc Nutrition Consultative
Group et al. (2004), and for iron from the Institute of Medicine (2002). I assume low bioavail-
ability for both zinc and iron. For zinc, this is due to diets relying heavily on unrefined cereals,
and for iron, it is because diets are high in phytate and low in animal-sourced foods.

To measure adequacy, I calculate the ratio of a household’s intake to its EAR. A ratio greater
than one indicates sufficient intake, while a ratio lower than one shows the fraction of the EAR
being consumed. I then create a binary variable for energy and each nutrient that equals one if
a household’s intake exceeds its EAR and zero otherwise.
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B. Appendix Figures
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Figure B1. Likelihood of consumption, by food group. HH: household.
Back to Section 3.
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Back to Section 5.
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Figure B3. Distribution of the intake of energy and nutrients. Daily intake per adult equiva-
lent unit.
Back to Section 5.
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Figure B4. Average share of total energy intake, by food group and source of consumption.
Back to Section 5.
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Figure B5. Agricultural season calendar. Based on Famine Early Warning Systems Network
(FEWSNET). The growing season includes both planting and growing.
Back to Section 3.
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Figure B6. Percentage of planted plots by month. Based on 39,030 plots from sample panel
farm HH. Representing all months between the reported planting start date and the reported
harvest start date for each plot.
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Figure B7. Temperature distribution of growing season days, by region. Based on the
sample farm panel households, i.e., 9,006 observations, 2,832 HH, within 392 enumeration
areas (clusters), over 2010-2023.
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Figure B8. Optimal GDD/HDD threshold using an iterative regression approach and effect
on total yield. Total yield is measured in logarithms, thus coefficients can be interpreted as
the relative percentage change for one additional growing season HDD. Conley spatial HAC
standard errors (in parentheses).
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Figure B9. Effect of HDD on consumption likelihood, by food group. Each food group
represents a dummy for household consumption in the last 7 days, but coefficients have been
divided by the respective sample means, thus coefficients can be interpreted as the relative
percentage change in the likelihood of consumption for one additional HDD. Conley spatial
HAC standard errors are used to build the 95% confidence intervals.
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Figure B10. Effect of HDD on energy intake, by food group. Each food group is expressed
as the logarithm of total energy intake, thus coefficients can be interpreted as the relative per-
centage change for one additional HDD. I set the dependent variable (logarithm) to zero for
all zero consumption values and include a dummy variable in the regression to account for this
data transformation. Conley spatial HAC standard errors are used to build the 95% confidence
intervals.
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Figure B11. Temperatures and livestock birth, purchase, sale, and death. Poisson pseudo-
maximum likelihood estimations using the computationally efficient estimator for Poisson re-
gressions using high-dimensional fixed effects developed by Correia (2016). Coefficients are
exponentiated and presented as incidence rate ratios (IRR). Reference bin < 31C. Weather over
the last 12 months (number of days in each bin). Mean number of annual days with average
temperature > 35C: 0.6. 95% confidence intervals are built using robust clustered standard
errors at the households level.
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Figure B12. Effect of HDD on household nutrient adequacy, by survey months. Each
nutrient adequacy represents a dummy equal to one if a household meets the intake requirement
at various thresholds (60%, 80%, and 100%). Coefficients have been divided by the respective
dependent variable sample mean, and can be interpreted as the relative percentage change in the
likelihood of meeting the requirement for one additional HDD. Conley spatial HAC standard
errors are used to build the 95% confidence intervals.
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Figure B13. Falsification tests. Adequacy indicators are set to 80% adequacy levels. Distri-
bution of the estimated coefficients resulting from the falsification tests using random weather
allocation. The vertical dotted line in each subplot reflects the respective coefficient estimate
of HDD for the main specification. Adq: adequacy. HDDS: Household dietary diversity score.
prot: protein.
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Figure B14. Robustness: Effect of HDD on energy intake, by food group. Total energy
intake is expressed in kilocalories and the coefficient is divided by the mean energy intake, thus
coefficients in this figure can be interpreted as the relative percentage change for one additional
HDD. This provides a robustness to Figure B10, where the outcome variable is expressed as
logarithms. Conley spatial HAC standard errors are used to build the 95% confidence intervals.
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C. Appendix Tables

2010 2012 2015 2018 2023 All

Panel farm HH (≥ 3 waves) 2,609 2,599 2,628 968 935 9,739
Strictly positive ag output & area 2,472 2,517 2,530 928 876 9,323
Strictly positive total energy intake 2,398 2,343 2,489 916 860 9,006
Final sample 2,398 2,343 2,489 916 860 9,006

% of panel sample (91.9%) (90.2%) (94.7%) (94.6%) (92.0%) (92.5%)

Table C1. Sample selection. A partial refresh of the panel sample was undertaken in wave 4.
The representativeness of the survey was impacted during wave 4 due to security issues, which
prevented data collection in some locations. The survey does not track “split-off” households.
HH: household.
Back to Section 3.

January February March April Total

Wave 1 0 41 2,296 61 2,398
Wave 2 0 373 1,964 6 2,343
Wave 3 0 597 1,879 13 2,489
Wave 4 902 14 0 0 916
Wave 5 0 797 63 0 860
Total 902 1,822 6,202 80 9,006

Table C2. Distribution of interview months, by survey wave.
Back to Section 5.
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Total yield (kg/ha) Total harvest (kg) Total area (ha)
GDD in growing season -0.0018*** -0.0017*** 0.0000

(0.0004) (0.0005) (0.0004)
HDD in growing season -0.0174*** -0.0154*** 0.0020

(0.0041) (0.0047) (0.0030)
Precipitations 0.0077** 0.0055** -0.0022

(0.0035) (0.0028) (0.0024)
Precipitations2 (×10−3) -0.0157** -0.0137** 0.0021

(0.0077) (0.0059) (0.0055)
Household FE Yes Yes Yes
Year FE Yes Yes Yes
Month-of-int FE Yes Yes Yes
R2 0.506 0.602 0.727
Observations 9,006 9,006 9,006

Table C3. Growing season weather, agricultural productivity, output, and land area. Total
yield, harvest, and land area are measured in logarithms, thus coefficients can be interpreted as
the relative percentage change for one additional growing season HDD. Conley spatial HAC
standard errors (in parentheses). FE: fixed effects.
Back to Section 5.

Energy Fat Carbs Protein
GDD in growing season 0.0001 0.0000 0.0001 0.0001

(0.0002) (0.0002) (0.0003) (0.0002)
HDD in growing season -0.0002 0.0002 -0.0004 -0.0005

(0.0015) (0.0012) (0.0018) (0.0015)
Household FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Month-of-int FE Yes Yes Yes Yes
Precipitations Yes Yes Yes Yes
R2 0.554 0.517 0.530 0.605
Observations 9,006 9,006 9,006 9,006

Table C4. Temperatures and energy and macronutrient intake. Expressed as logarithms,
thus coefficients can be interpreted as the relative percentage change for one additional HDD.
Conley spatial HAC standard errors (in parentheses). FE: fixed effects.
Back to Section 5.
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Total Purchased Own-prod Gifted
GDD in growing season 0.0001 -0.0001 0.0002 -0.0001

(0.0001) (0.0001) (0.0002) (0.0002)
HDD in growing season -0.0002 -0.0015 0.0002 -0.0020

(0.0008) (0.0013) (0.0016) (0.0015)
Household FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Month-of-int FE Yes Yes Yes Yes
Precipitations Yes Yes Yes Yes
R2 0.554 0.558 0.905 0.895
Observations 9,006 9,006 9,006 9,006

Table C5. Temperatures and energy intake, by source of consumption. Expressed as loga-
rithms, thus coefficients can be interpreted as the relative percentage change for one additional
HDD. I set the dependent variable (logarithm) to zero for all zero consumption values and in-
clude a dummy variable in the regression to account for this data transformation. Conley spatial
HAC standard errors (in parentheses). FE: fixed effects. prod: production.
Back to Section 5.

Education Housing Comm & transport Clothing Recreation
GDD in growing season -0.0003* -0.0008*** -0.0005** -0.0006** -0.0001

(0.0002) (0.0002) (0.0002) (0.0003) (0.0003)
HDD in growing season -0.0013 -0.0094*** -0.0065*** -0.0063*** 0.0004

(0.0017) (0.0017) (0.0017) (0.0021) (0.0025)
Household FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Month-of-int FE Yes Yes Yes Yes Yes
Precipitations Yes Yes Yes Yes Yes
R2 0.808 0.728 0.863 0.570 0.662
Observations 8,146 8,146 8,146 8,146 8,146

Table C6. Temperatures and non-food expenditure. Housing includes utilities and household
services. Comm: communication. Clothing includes housing goods. Recreation includes other
miscellaneous expenses. Expenditure is expressed in logarithms, thus coefficients can be in-
terpreted as the relative percentage change for one additional HDD. Annualized expenditure in
USD 2020 (originally, food: last 7 days; non-food: last month or last 12 months). Expenditure
information is missing for wave 5. I set the dependent variable (logarithm) to zero for all zero
consumption values and include a dummy variable in the regression to account for this data
transformation. Conley spatial HAC standard errors (in parentheses). FE: fixed effects. HDDS:
Household dietary diversity score.
Back to Section 5.
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Total Purchased Own-prod Gifted
GDD 0.0004* 0.0001 0.0005 0.0000

(0.0002) (0.0003) (0.0003) (0.0002)
GDD × Mar-Apr -0.0004*** -0.0003*** -0.0005*** -0.0002**

(0.0001) (0.0001) (0.0001) (0.0001)
HDD 0.0015 -0.0007 0.0026 -0.0015

(0.0015) (0.0022) (0.0026) (0.0019)
HDD × Mar-Apr -0.0015** 0.0002 -0.0034** -0.0009

(0.0007) (0.0010) (0.0013) (0.0008)
Household FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Month-of-int FE Yes Yes Yes Yes
Precipitations Yes Yes Yes Yes
R2 0.563 0.561 0.905 0.895
Observations 9,006 9,006 9,006 9,006

Table C7. Temperatures and energy intake, by source of consumption and survey months.
Variables are expressed in logarithms, thus coefficients can be interpreted as the relative per-
centage change for one additional HDD. I set the dependent variable (logarithm) to zero for all
zero consumption values and include a dummy variable in the regression to account for this data
transformation. Conley spatial HAC standard errors (in parentheses). FE: fixed effects.
Back to Section 5.

Cereals Roots Veg Fruits Pulses
GDD 0.0004** 0.0001 0.0001 -0.0001 0.0001

(0.0002) (0.0003) (0.0002) (0.0001) (0.0001)
GDD × Mar-Apr -0.0003*** 0.0000 -0.0003*** 0.0000 -0.0002***

(0.0001) (0.0001) (0.0001) (0.0000) (0.0001)
HDD 0.0033* -0.0009 -0.0011 -0.0019** 0.0011

(0.0018) (0.0018) (0.0013) (0.0007) (0.0010)
HDD × Mar-Apr -0.0021** 0.0000 -0.0012* 0.0000 -0.0010*

(0.0009) (0.0006) (0.0006) (0.0002) (0.0005)
Household FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Month-of-int FE Yes Yes Yes Yes Yes
Precipitations Yes Yes Yes Yes Yes
R2 0.982 0.974 0.851 0.961 0.984
Observations 8,090 8,090 8,090 8,090 8,090

Table C8. Temperatures and energy intake from main own-produced foods, by survey
months. Variables are expressed in logarithms, thus coefficients can be interpreted as the rela-
tive percentage change for one additional HDD. I set the dependent variable (logarithm) to zero
for all zero consumption values and include a dummy variable in the regression to account for
this data transformation. Conley spatial HAC standard errors (in parentheses). FE: fixed effects.
Back to Section 5.
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HDDS Adq prot Adq iron Food exp Non-food exp Share sold
GDD -0.0004 0.0000 0.0000 0.0000 -0.0006*** -0.0001

(0.0004) (0.0002) (0.0002) (0.0003) (0.0001) (0.0001)
GDD × Mar-Apr -0.0001 -0.0001*** -0.0002*** -0.0002* -0.0000 -0.0000

(0.0002) (0.0000) (0.0001) (0.0001) (0.0001) (0.0000)
HDD -0.0028 -0.0014 -0.0016* -0.0030* -0.0088*** -0.0014**

(0.0031) (0.0010) (0.0010) (0.0018) (0.0013) (0.0006)
HDD × Mar-Apr -0.0030** -0.0010** -0.0009* -0.0007 0.0017** 0.0001

(0.0015) (0.0004) (0.0005) (0.0010) (0.0008) (0.0004)
Household FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Month-of-int FE Yes Yes Yes Yes Yes Yes
Precipitations Yes Yes Yes Yes Yes Yes
R2 0.621 0.518 0.522 0.627 0.766 0.512
Observations 8,090 8,090 8,090 7,230 7,230 5,330
Mean Y 5.521 0.826 0.752 . . 0.197

Table C9. Robustness: Temperatures and dietary diversity, nutrient adequacy, expen-
diture, and commercialization, by survey months. This table is a robustness analysis for
Table 4, excluding wave 4. Adequacy indicators are set to 80% adequacy levels. Coefficients
on HDDS can be interpreted as the absolute change in the HDDS for one additional HDD.
Coefficients on adequacy indicators can be interpreted as percentage-point change in the likeli-
hood for one additional HDD. Expenditure is expressed in logarithms, thus coefficients can be
interpreted as the relative percentage change for one additional HDD. Annualized expenditure
in USD 2020 (originally, food: last 7 days; non-food: last month or last 12 months). Food ex-
penditure represents purchased food. Expenditure information is missing for wave 5. I set the
dependent variable (logarithm) to zero for all zero consumption values and include a dummy
variable in the regression to account for this data transformation. Information on sold harvested
quantities is missing for 33.7% of households (either missing or set to missing because it is
higher than harvested quantities or negative). Conley spatial HAC standard errors (in parenthe-
ses). Adq: Adequacy. FE: fixed effects. HDDS: Household dietary diversity score. Back to
Section 5.
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HDDS Adq prot Adq iron Food exp Non-food exp Share sold

HDD -0.0053* -0.0020** -0.0025*** -0.0036** -0.0069*** -0.0011*
(0.0031) (0.0008) (0.0009) (0.0017) (0.0015) (0.0006)

HDD × HH livestock -0.0003 -0.0003 -0.0001 -0.0003 -0.0009 -0.0008***
(0.0015) (0.0003) (0.0004) (0.0007) (0.0006) (0.0003)

HDD -0.0065* -0.0016 -0.0014 -0.0041** -0.0077*** -0.0018**
(0.0035) (0.0010) (0.0011) (0.0019) (0.0016) (0.0007)

HDD × ln(dist pop center) 0.0004 -0.0001 -0.0002* 0.0001 0.0000 0.0001
(0.0005) (0.0001) (0.0001) (0.0002) (0.0002) (0.0001)

HDD -0.0064** -0.0021** -0.0023** -0.0036** -0.0075*** -0.0017***
(0.0030) (0.0008) (0.0010) (0.0017) (0.0014) (0.0006)

HDD × HH non-farm enterprise 0.0019 -0.0003 -0.0003 -0.0003 -0.0001 -0.0001
(0.0014) (0.0003) (0.0004) (0.0008) (0.0006) (0.0003)

HDD -0.0051* -0.0022*** -0.0026*** -0.0040** -0.0076*** -0.0020***
(0.0028) (0.0008) (0.0009) (0.0016) (0.0014) (0.0006)

HDD × Head wage job (last 7 days) 0.0001 0.0002 0.0011** -0.0006 0.0007 0.0012***
(0.0019) (0.0004) (0.0005) (0.0010) (0.0011) (0.0004)

Mean Y 5.576 0.829 0.750 . . 0.199

Table C10. Effect of HDD on dietary diversity, nutrient adequacy, expenditure, and commercialization, by potential moderators. This
table displays the results from 24 regressions, under the main specification. Adequacy indicators are set to 80% adequacy levels. Coefficients on
HDDS can be interpreted as the absolute change in the HDDS for one additional HDD. Coefficients on adequacy indicators can be interpreted as
percentage-point change in the likelihood for one additional HDD. Expenditure is expressed in logarithms, thus coefficients can be interpreted as
the relative percentage change for one additional HDD. Annualized expenditure in USD 2020 (originally, food: last 7 days; non-food: last month
or last 12 months). Food expenditure represents purchased food. Expenditure information is missing for wave 5. Information on sold harvested
quantities is missing for 33.7% of households (either missing or set to missing because it is higher than harvested quantities or negative). HH
livestock, HH non-farm enterprise, and head wage job are dummy variables equal to one if the household manages at least one livestock head, ran
at least one non-farm entreprise in last 12 months, was employed in a wage job in the last 7 days. The distance to the nearest population center
with more than 20,000 inhabitants is in log kilometers. Conley spatial HAC standard errors (in parentheses). Adq: Adequacy. dist: distance. edu:
education. HDDS: Household dietary diversity score. H: household. pop: population. prot: protein.
Back to Section 5.
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Harvest (kg) HDDS Adq prot Adq iron

Distance 50km, time lag 1 year (0.0038)*** (0.0025)** (0.0007)*** (0.0008)***
Distance 50km, time lag 5 years (0.0038)*** (0.0026)** (0.0007)*** (0.0008)***
Distance 50km, time lag 10 years (0.0039)*** (0.0027)* (0.0007)*** (0.0009)***

Distance 100km, time lag 1 year (0.0046)*** (0.0028)* (0.0008)*** (0.0009)***
Distance 100km, time lag 5 years (0.0047)*** (0.0028)* (0.0008)*** (0.0009)***
Distance 100km, time lag 10 years (0.0047)*** (0.0029)* (0.0008)*** (0.0009)***

Distance 200km, time lag 1 year (0.0056)*** (0.0030)* (0.0008)*** (0.0009)***
Distance 200km, time lag 5 years (0.0056)*** (0.0031)* (0.0009)*** (0.0009)***
Distance 200km, time lag 10 years (0.0057)*** (0.0032)* (0.0009)** (0.0009)***

Table C11. Spatial-HAC standard errors sensitivity. Adequacy indicators are set to 80%
adequacy levels. Conley spatial HAC standard errors on the HDD coefficient for the main
specification. Adq: Adequacy. HDDS: Household dietary diversity score. prot: protein.
Back to Section 5.
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Maize Potato Onion Banana Beef Egg Fish Horsebean Milk
GDD in growing season 0.0001 -0.0004 -0.0008 0.0003 -0.0006 0.0027*** 0.0008 -0.0004 -0.0018

(0.0003) (0.0020) (0.0012) (0.0008) (0.0012) (0.0008) (0.0007) (0.0006) (0.0023)
HDD in growing season -0.0021 0.0106 -0.0102 -0.0156* -0.0061 0.0296** -0.0075 -0.0050 -0.0147

(0.0035) (0.0222) (0.0096) (0.0093) (0.0118) (0.0122) (0.0065) (0.0050) (0.0167)
Cluster FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Month-of-int FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Precipitations Yes Yes Yes Yes Yes Yes Yes Yes Yes
R2 0.771 0.633 0.408 0.606 0.519 0.721 0.553 0.717 0.500
Clusters 110 32 131 120 328 88 252 89 37
Observations 283 73 382 333 891 219 693 231 89

Table C12. Temperatures and food prices. Variables are expressed in logarithms, thus coefficients can be interpreted as the relative percentage
change for one additional HDD. Conley spatial HAC standard errors (in parentheses).
Back to Section 5.67



< 5 yo 15-65 yo > 65 yo
GDD in growing season -0.0001 0.0001 -0.0000

(0.0001) (0.0001) (0.0000)
HDD in growing season -0.0005 0.0010 -0.0001

(0.0006) (0.0007) (0.0001)
Household FE Yes Yes Yes
Year FE Yes Yes Yes
Month-of-int FE Yes Yes Yes
Precipitations Yes Yes Yes
R2 0.622 0.792 0.578
Observations 8,949 8,941 8,949

Table C13. Temperatures and household composition. Each age group is expressed as the
logarithm of total household member in that age range, thus coefficients can be interpreted as
the relative percentage change for one additional HDD. I set the dependent variable (logarithm)
to zero for all zero values and include a dummy variable in the regression to account for this
data transformation. Conley spatial HAC standard errors (in parentheses).
Back to Section 5.
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Share of total area (ext. margin) Intensive margin (kg)

Mixed cropping Pesticides Organic fert. Inorganic fert. Inorganic fert.
GDD in growing season 0.0001 -0.0001 -0.0003*** 0.0002 -0.0009***

(0.0001) (0.0001) (0.0001) (0.0002) (0.0002)
HDD in growing season 0.0006 0.0004 -0.0000 0.0008 -0.0046***

(0.0007) (0.0008) (0.0010) (0.0011) (0.0017)
Household FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Month-of-int FE Yes Yes Yes Yes Yes
Precipitations Yes Yes Yes Yes Yes
R2 0.550 0.529 0.509 0.598 0.853
Observations 9,006 9,006 9,006 9,006 9,006
Mean Y 0.678 0.180 0.116 0.380 .

Table C14. Temperatures and farm household productive response. Conley spatial HAC
standard errors (in parentheses). Ext.: extensive margin. FE: fixed effects. Int.: intensive
margin.
Back to Section 5.

Total Family Hired

Int. Ext. Int. Ext. Int.
GDD in growing season 0.0009 -0.0001** 0.0010 0.0001 0.0005*

(0.0009) (0.0000) (0.0009) (0.0002) (0.0003)
HDD in growing season 0.0048 -0.0004 0.0059 -0.0006 0.0016

(0.0057) (0.0002) (0.0059) (0.0013) (0.0020)
Household FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Month-of-int FE Yes Yes Yes Yes Yes
Precipitations Yes Yes Yes Yes Yes
R2 0.690 0.391 0.704 0.537 0.844
Observations 9,006 9,006 9,006 9,006 9,006
Mean Y . 0.985 . 0.679 .

Table C15. Temperatures and farm labor during the agricultural season. Conley spatial
HAC standard errors (in parentheses). Ext.: extensive margin. FE: fixed effects. Int.: intensive
margin. SOB: small-own business.
Back to Section 5.
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